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Abstract: It is shown how the theory of decoupling and partial linearization of nonlinear affine systems can enhance the design of 
variable structure control systems and expand their range of applicability. Refined insights into the design of nonlinear switching 
surfaces and a new regular form are obtained. Application to an adjustable speed induction motor drive illustrates how this method 
allows stabilization of a periodic attractor. 
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1. Introduction 

Beginning with the paper of Byrnes and Isidori [3], several investigators including Byrnes and Isidori [4], 
Isidori and Moog [11] and van der Schaft [19] have articulated the notion of zero dynamics for a class of 
nonlinear systems of the form 

= f ( x )  + G(x)u, ( la )  

y = h ( x ) ,  ( lb )  

where x ~ R ~, u ~ R m, y ~ R m, with m < n, and f ,  G = [gl . . . . .  gin] and h are smooth functions of x. In 
general terms, the notion of 'zero dynamics' correspond to the dynamics of the motion of (1) constrained 
to a manifold defined by h(x)=0. The characterization of these constrained dynamics provides a 
convenient vehicle for decoupling and partial ( input-output)  linearization via nonlinear feedback. 

The connection of this problem with variable structure control is immediately suggested because the 
constrained motion is analogous to the 'sliding motion' of variable structure control. When the concepts of 
variable structure control are combined with the ideas of partial linearization and zero dynamics for 
nonlinear dynamical systems we obtain an elegant characterization of control systems of this type. This 
perspective leads to several important observations and results. It will be seen that the 'equivalent control'  
of VS theory is precisely the feedback (partial) linearizing and stabilizing control. A convenient new 
regular form for VS control system design is obtained and the method of nonlinear switching surface 
design based on specification of the sliding dynamics in terms of differential equations is clarified and 
enhanced, resulting in a more systematic approach. 

The combination of VS control with exact linearization has been previously discussed by Fernandez and 
Hedrick [6] and others, where the essential idea is to exploit linearizability (by smooth state feedback) in 
order to reduce the problem to one which is solvable by available methods. It is presumed that the output  
set is given and the associated zero dynamics are stable. However, unlike these earlier studies, the zero 
dynamics represent the central issue of interest herein. Our view is more in the spirit of Byrnes and Isidori 
[4] who prove that a sliding surface can be constructed for a minimum phase nonlinear system. However, 
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the results herein provide a straightforward construction for the switching surface and do not depend on a 
local explicit representation of the zero dynamics. This last point is important in some applications where 
it is not intended, nor is it appropriate, for the zero dynamics to be characterized by a stable equilibrium 
point. We emphasize the significance of this issue with a practical example in which the zero dynamics 
evolve on a cylinder which contains a stable periodic orbit. In addition, our conclusions generalize the 
asymptotic linearization results of Bartolini and Tolezzi [1] to the multivariable case. 

2. Sliding modes and output regulation: Preliminary remarks 

Consider a nonlinear dynamical system of the form (la). The controls u i are discontinuous across 
smooth surfaces si(x ) = 0, i.e. 

u , (x )  = { u ? ( x )  i f s , ( x ) > 0 ,  
uT(x) i f s , ( x ) < 0 ,  i = 1  . . . . .  m, (2) 

and the control functions u~(x) and u~(x) are smooth functions of x. 
The design of switching control systems of the type (la), (2) is greatly facilitated by the deliberate 

introduction of sliding modes [18]. If there exists an open submanifold, M, of any intersection of 
discontinuity surfaces, s~(x)= 0 for i = 1 . . . . .  p < m, such that sfi, < 0 in the neighborhood of almost 
every point in M, then it must be true that a trajectory once entering M remains in it until a boundary is 
reached. M is called a sliding manifold and the motion in M is called a sliding mode. 

Variable structure control system design entails specification of the switching functions si(x) and the 
control functions uT(x ) and uZ(x ). It is typically a two step process which involves: (a) design of the 
'sliding mode' dynamics by the choice of switching surfaces, and (b) design of the 'reaching' dynamics by 
the specification of the control functions. 

If a trajectory of (1), (2) lies in a sliding manifold M, then it is characterized by the constraint s(x) = O, 
and all time derivatives of s(x) also vanish. The control is not defined by (2) when s = 0. Denote by Ueq 
(the equivalent control) the control which obtains while the trajectory remains in the manifold M. Then, 
Ueq is defined by 

= S(x):~ = S ( x ) {  f ( x )  + G(x)Ueq  } := 0 (3) 

where S(x) .'= (3/Sx)s(x) and it is assumed that 

det{ S (x )G(x)}  ~ 0 (4) 

in which case we have 

Ueq = - [ S ( x ) G ( x ) ]  - ' S ( x ) f ( x ) .  (5) 

Motion in the sliding mode is then defined by 

5 c = [ I - G ( x ) [ S ( x ) G ( x ) ] - ' S ( x ) ] f ( x ) ,  s ( x ( 0 ) ) = 0 .  (6) 

It is easy to verify that trajectories which satisfy (6) and begin in a manifold defined by s(x) = 0, remain 
therein. If sliding occurs, it is characterized by (6). Conditions for the existence of such trajectories have 
been given by Utkin [18]. 

Consider the system (1) where y denotes a set of 'regulated' outputs. Our objective is to control the 
system so that y ( l )  --+ 0 as t --+ 00. Thus ,  the desired ultimate system behavior corresponds to the condition 
defined by 

h(x) - 0 .  (7) 
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We would like to characterize the behavior defined by imposing the constraint (7) on the dynamics (la). 
This problem is similar to that of identifying the sliding dynamics and we might proceed in like manner  by 
setting the derivative of h equal to zero. A complication arises, however, because there is no reason to 
assume that [{(O/Ox)h(x)}G(x)] is not singular. Nevertheless, this problem has a known solution, 
obtained by successive differentiation of h, and which we will describe below. In this case, we obtain an 
'effective' control Uo(X ) implied by the constraint (7), which is the natural counterpart  of the equivalent 
control Ueq(X ) and a constrained dynamical system corresponding to (6). 

3.  V a r i a b l e  s t r u c t u r e  c o n t r o l  d e s i g n  

In the following paragraphs, we will develop a view of variable structure control system design closely 
associated with methods of exact linearization [8] which has evolved from work of Krener [14], Brockett 
[2], Hirschorn [7] and Byrnes and Isidori [3]. We provide a sketch of the essentials, noting that the basic 
ideas for decoupling, partial linearization and stabilization of nonlinear systems are more fully developed 
in Isidori et al. [10], Charlet [5], Byrnes and Isidori [4] and Isidori [9]. 

Partial linearization and zero dynamics 

Denote the k-th Lie (directional) derivative of the scalar function ~ ( x )  with respect to the vector field 
f ( x )  by L~(~). Now, by successive differentiation of the outputs y in ( lb)  we arrive at the following 
defintions. Let 

ri=inf{k[L~j (L~- ' (h , ) )  --/:0 for at least one j } .  (8) 

Then r i is the i-th characteristic number  of (1). Let us define the column vector a(x) and the matrix p(x) :  

. _  r s  . a i ( x ) . - L ~ ( h i ) ,  i = 1  . . . .  m ,  Ptj(x):=Lgj(Lr/- l(hi))  i, j = l  . . . . .  m. (9) 

Also define the vector z ~ R r, r = r 1 + • • • + r,., as 

2 2 

z. '= : , z ~ R  r', i = 1  . . . . .  m,  (lOa) 

2 

where 

zik=L~-l(hi) ,  k - - 1  . . . . .  r i a n d i = l  . . . . .  m. (10b) 

It  is a straightforward calculation to verify that the variables z defined by (10) satisfy the relation 

=Az + E [ a ( x )  + p(x)u] ,  ( l l a )  

y = Cz, (11b) 

where the only nonzero rows of E are the m rows r], r] + r 2 . . . . .  r and these form the identity I, , ,  the only 
nonzero columns of C are the columns 1, r~ + 1, r~ + r 2 + 1 . . . . .  r - r,, + 1 and these form the identity Ira, 
and 

-- • = ~ • ( 1 2 )  
0 

Now we can easily establish the following result. 
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P r o p o s i t i o n  1. Suppose that p ( x ) has continuous f irst  derivatives with det ( p (x )  ) :~ 0 on M o = { x I z ( x ) = 0 }. 
Then M o is a regular, n - r dimensional submanifoM o f  R" and any trajectory segment x (  t ), t ~ 7", T an open 
interval or R 1, which satisfies h(  x (  t )) = 0 on T lies entirely in M o. Moreover, the control which obtains on T 
is 

Uo(X ) = - p - l ( x ) o / ( x )  (13) 

and every such trajectory segment with boundary condition X( to) = x o, t o ~ T, satisfies" 

2 = f ( x ) - a ( x ) p - ' ( x ) c t ( x ) ,  z ( x ( t o )  ) = 0 .  (14) 

Proof.  It follows f rom de t{p(x )}  4= 0 on M 0 that O z ( x ) / a x  is of maximum rank on the set M 0 = { x l z ( x )  
= 0} [9]. This maximal rank condit ion insures that M 0 is a well defined regular manifold of  dimension 
n - r. F rom the definition of  z ( x ) ,  it follows that y is identically zero on an open time interval if and only 
if z is zero on that interval. Thus, it follows f rom (11) that the unique control  which must  obtain  during 
any mot ion constrained by  h ( x )  = 0 is (13). With this control  (1) reduces to (14). [] 

Note  that the manifold M 0 defined by z ( x ) =  0 is invariant with respect to (14) so that any mot ion  
beginning in it remains therein. Indeed, (14) defines a flow on M 0 with all trajectories satisfying 
y ( t )  = h ( x ( t ) )  = 0. This justifies reference to (14) as the zero output constrained dynamics and to M 0 as the 
zero dynamics manifold. 

It is assumed henceforth that the matrix p ( x )  is nonsingular  1. In this case, we can apply the feedback 
control  law 

u = - O - a ( x ) [ ~ ( x )  - v] (15) 

where v is a new control  input. Thus, we have the linearized i n p u t - o u t p u t  model  

d = A z  + Ev ,  (16a) 

y = Cz.  (16b) 

Note  that the control  law (15) simultaneously linearizes the i n p u t - o u t p u t  relation and decouples some of  
the dynamics  (the zero dynamics)  f rom the output.  

It is not  u n c o m m o n  to refer to the variables z as the linearizable coordinates.  The terminology of  
coordinates is justified by the maximal rank condit ion in the following way. Let Z : R" --, R r denote  the 
map realized as the function z ( x ) .  By virtue of  the maximal  rank assumption and the implicit function 
theorem we can choose local coordinates (Yl . . . . .  y , )  on R" near any point  a ~ M 0 such that Z ( y ) =  
(Yl . . . . .  yr). In terms of  these coordinates M 0 is defined by yl = 0 . . . . .  Yr = 0. As a mat ter  of  fact, the first 
r components  correspond to the level sets z ( x ) =  c which exist for all c in some ne ighborhood  of  the 
origin in R' .  The remaining components  (Yr+ 1 . . . . .  y , )  provide local coordinates on M 0. 

Sliding dynamics 

Let us proceed to design a variable structure controller  for (1) by selecting a switching surface which is 
linear in z. 

P r o p o s i t i o n  2. Le t  s ( x ) =  K z ( x )  and suppose the conditions o f  Proposition 1 hold and a s ( x ) / 8 x  is o f  
m a x i m u m  rank on the set M s = { x  I s ( x ) =  0}. Then M s is a regular n - m dimensional submanifold o f  R" 

which contains M o. Moreover,  i f  K is structured so that the m columns numbered rl, r a + r 2 . . . . .  r compose an 
identity In ,  then for  any trajectory segment x (  t ), t ~ T, T an open interval o f  R 1, which lies entirely in Ms, the 

control which obtains on T is 

Ueq = - p - l (  x ) K A z  - p - ' (  x )~t( x ) (17) 

In the event that d e t ( p ( x ) }  = 0, then further steps must be taken. See the 'zero dynamics algorithms' in Byrnes and Isidori [4] and 
the discussion in Fernandez and Hedrick [6]. 
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and every such trajectory with boundary condition X( to) = x o ~ M s, t o ~ T, satisfies 

: ~ = f ( x ) - G ( x ) o - a ( x ) { a ( x ) +  K A z ( x ) } ,  K z ( x ( t o )  ) = 0 .  (18) 

Proof. The maximum rank condition insures that M s is a regular manifold of dimension n - m. M 0 is a 
submanifold of M s in view of the definition of s (x ) .  Motion constrained by s ( x ( t ) )  = 0 must satisfy the 
sliding condition ~ = 0 and direct computation leads to (17) and (18). [] 

In this case observe that the manifold M s is invariant with respect to the dynamics (18). The flow 
defined by (18) on M, is called the sliding dynamics and the control defined by (17) is the equivalent 
control. Note that the equivalent control behaves as a linearizing feedback control. The partial state 
dynamics in sliding is obtained from ( l l a )  and (17): 

2 = [ I -  E K ] A z ,  K z ( t o )  = 0. (19) 

Proposition 3. Suppose the conditions o f  Propositions 1 and 2 apply. Then M o is an invariant manifold o f  the 
sliding dynamics (18). Moreover, i f  K is specified as 

K = d i a g ( k  1 . . . . .  kin), k i = [ a  n . . . . .  ai , r_l ,  1], (20) 

where the m ordered sets o f  coefficients ( a  n . . . . .  ai, r_ 1 }, i = 1 . . . . .  m,  each constitute a set o f  coefficients o f  a 
Hurwitz polynomial. Then every trajectory o f  (18) not beginning in M o approaches M o exponentially. 

Proof. Notice that (19) implies that the only trajectory of (18) with boundary condition Z ( t o ) =  0 is 
z ( t )  = 0 for all t and hence M 0 is an invariant set. 

Note that Ira[E] + Ker[K] = R r so that the motion of (19) can be conveniently divided into a motion in 
Ira[E] and a motion in Ker[K] and the latter has eigenvalues which coincide with the transmission zeros 
of the triple (K, A, E);  see Young et al. [20]. To prove that trajectories of (18) approach M 0 exponentially 
we need only show that all trajectories of (19) in Ker[K] approach the origin asymptotically. Let the 
matrix N be chosen so that its columns form a basis for Ker[K] and introduce the coordinate vectors 
w ~ R r - "  and v ~ R m, and write 

z = N w  + Ev.  (21) 

The inverse of (21) may be written 

Direct calculation verifies that (19) is replaced by 

d [ w l = I M ~ N  M ~ E I [ w ] ,  v ( 0 ) = 0 .  (23) 

The result obtains if Re ~{ M A N  } < 0. If the matrix K is chosen in accordance with (20), then the 
eigenvalues of M A N  are precisely the r - m eigenvalues of the matrices 

0 1 0 . . .  
0 0 1 0 

0 1 

- -  a l l  - -  a i 2  

. ° .  

0 

1 

a iri - 1 

_ 

i = 1  . . . . .  m ,  (24) 

which lie in the open left half plane by assumption. 
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Reaching dynamics 

The remaining step in VS control system design is the specification of the control functions u, -~ such 
that the manifold s ( x ) =  0 contains a stable submanifold which insures that sliding occurs. There are 
many ways of approaching the reaching design problem (Utkin [18]). We consider only one. Consider the 
positive definite quadratic form in s, 

~7"= stOs. (25) 

A sliding mode exists on a submanifold of s (x )  = 0 which lies in a region of the state space on which the 
time rate of change of Y/" is negative. Upon differentiation we obtain 

d 
d--7 ~e "= 2gTQs = 2[KAz + a]TQKz + 2u'CoTQKz. (26) 

If the controls are bounded, l uil ~< U,, > 0, then obviously, to minimize the time rate of change of ¢,~, we 
should choose 

u j ( x ) = - U ~ s i g n ( s i * ) ,  i = 1  . . . . .  m, and s * = o T ( x ) Q K z ( x ) .  (27) 

It follows that ~2" is negative provided 

I uToTQ Kz I > I[ KAz + a l t o  Kz I. (28) 

A useful sufficient condition is that 

I ( o ( x ) U ) i l  > I [ K A z ( x ) +  a ( x ) ] , l .  (29) 

Conditions (28) or (29) may be used to insure that the control bounds are of sufficient magnitude to 
guarantee sliding and to provide adequate reaching dynamics. This rather simple approach to reaching 
design is satisfactory when a 'bang-bang '  control is acceptable. 

~¢c  M 0 is a stable attractor of the zero dynamics if it is a closed invariant set and if for every 
neighborhood U of ~¢ in M 0 there is a neighborhood V of ~¢ in M 0 such that every trajectory of (19) 
beginning in V remains in U and tends to ~ '  as t ---, oo. The following proposition establishes conditions 
under which the variable structure controller (27) applied to (1) stabilizes ~¢ in R ~. 

Proposition 4. Suppose that the conditions of Propositions 1, 2 and 3 apply; ~ is an open region in R n in 
which (28) is satisfied; ~s = ~ n M~ is nonempty; and eacc M o is a bounded, stable attractor of the zero 
dynamics which is contained in ~s n M o. Then ~¢ is a stable attractor of the feedback system composed of (1) 
with feedback control law (27). 

Proof. Since ~ is an open region in R" in which (28) is satisfied, a sliding mode exists in ~ ,  = ~ n M, 
which is nonempty. In fact, ~0 = ~ ,  n M 0 is also nonempty and it contains a bounded, stable attractor ~¢ 
of the zero dynamics (14). Proposition 3 implies that ea¢ is also a stable attractor of the sliding dynamics 
(18). Thus, for any neighborhood fi of d in Ms there is a neighborhood 12 of .sac in M s such that 
trajectories of (18) beginning in 12 remain in U and tend to ea¢ with increasing time. We must show that a 
similar property applies for neighborhoods of m¢ in R n with respect to the dynamics defined by (1) and 
(27). Let 

Kmi n = i n f  { u T p T Q K z  -- [ K A z  %- a ]  TQKz  } > 0 

which exists by virtue of (28), and 

" m a x =  s u p  f ( x )  - & ( x ) ~ s i g n ( s , * )  
-~ i=1 

(30) 

<o o  (31) 
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Fig. 1. The relationship between the output constraint manifold, the sliding manifold and the zero dynamics manifold in a three 
dimensional state space. 

which exists because f and G are continuous and ~ is bounded, and where I1" II denotes the Euclidean 
norm. Let S(r ,  Xo) denote the open sphere in R" of radius r and centered at x 0 and define the set 

S ( r )  := U S ( r ,  a ) .  (32) 
aE.ug 

Note  that any element of S ( r )  is at most a distance r from M s and hence any trajectory starting in S ( r )  
will reach M s in a finite time not greater than t r = r / X ~ m i  ~ . Thus, any trajectory segment of the of the 
closed loop system beginning in S ( r )  and terminating upon reaching M s is entirely contained in the set 
S(R ) where 

R = r ( 1 q- ~/ICmax//Krnin } (33) 

Now, let 0 be any neighborhood of ~¢ in R". Define U = U n Ms, so that U is a neighborhood of ~¢ in 
M s. Then there exists a neighborhood 12 of ~¢ in M s such that trajectories beginning in V remain in tY and 
tend to ~¢ with increasing time. In view of (33), we can always choose r sufficiently small so that 
S ( R )  n M s c  l ? n ~  s. Then we identify 1~'= S(r ) .  It follows that trajectories of (1), (27) beginning in 12 
remain in U and approach ~¢ as t ~ o¢. [] 

Remarks  on stability 

First, let us denote M h = ( x l h ( x )  = 0) and we assume that M h is a regular submanifold of R" of 
dimension n - m. Note  that M 0 is a submanifold of both M h and M s so that M 0 lies in the intersection of 
M h and M~. The relationships between these manifolds are illustrated in Figure 1. 

Our results imply that the dosed loop system behaves as follows. If the initial state is sufficiently close 
to ~s,  the trajectory will eventually reach ~s and will thereafter approximate ideal sliding. Ideal sliding is 
characterized by (18) and sliding trajectories which remain in ~s approach 90 and eventually ~ .  That  .~¢ 
is a stable attractor of (18) is obvious. However, this only implies that trajectories of (18) beginning 
sufficiently close to d approach ~¢. An important open problem is that of obtaining estimates of the 
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domain of attraction. There are quite subtle issues here even in the simplest case where ~¢ is a globally 
stable equilibrium point of the zero dynamics (Kokotovic and Sussman [13]). 

4. Example: The variable speed induction drive 

In this section we give a brief account of the main issues of variable structure control system design for 
an adjustable speed induction motor. This problem has been previously considered by Izosimov and Utkin 
[12] and also Sabanovic and Izosimov [17]. A model for a round rotor, squirrel-cage motor  with three 
stator phases and two rotor windings is: 

with 

O) 

id 

d iq 
M~-~ i0 

lf l  

if :  

- tO  7 - - - T  

i d V d 

iq Oq 

= -- C i0 + Vo 

i f l  0 

if2_ 0 / 

M =  

- J  0 0 0 0 

0 L s 0 0 Lfe , 

0 0 L s 0 0 

0 0 0 L o 0 

0 Lfd 0 0 Lf 

0 0 Lid 0 0 

0 
0 

Lfd 

0 ' 

0 

Lf 

(34a) 

C =  

0 
-- Ltdif2 

Ldfifl 

0 

0 

0 

Lfdif2 
r 

- -  ( . . o L  s 

0 

0 

0 

- - L f d i f l  
w L  s 

r 

0 

0 

0 

0 0 
0 0 

0 0 

r 0 

0 rf 

0 0 

_ 

0 

0 

0 ' 

0 

rf 

(34b) 

where the electrical torque is given by 

T = Lfd { i t l iq  --  i f2id } 

and the following nomenclature has been adopted: 

tO 

Of 
v i, i = 1 , 2 ,  3 
o~, a = d ,  q, 0 
ifi, i = 1, 2 
ii, i = 1 , 2 , 3  
i~, a = d ,  q, 0 

rotor angular velocity, 
field winding voltage, 
stator winding voltages, 
stator Blondel voltages, 
field winding currents, 
stator winding currents, 
stator Blondel currents, 

(35) 

~" mechanical torque (load), 
T electrical torque, 
J mechanical rotating inertia, 
r, rf stator and field winding resistances, 
L s stator d& q axis inductances, 
L o stator zero sequence axis inductance, 
Lf  field winding self inductance, 
Lfd f ie ld /s ta tor  mutual inductance. 

If we use the notation I T = [il, i2, i3], and V T = [Vl, 02, v3] and 1B T = [id, iq, i0], VB v = [Vd, Vq, %] then 
the (unitary, power conserving) Blondel transformation which relates stator winding currents and voltages 
I, V in the fixed reference frame to the Blondel current and voltages I B, V B in the frame attached to the 
rotor is 

I B = BI ,  V B = B V ,  

cos0 cos(0-  ) cos(0+  ) 1 
B = ~ -  sin 0 sin(0 - ~¢r) sin(0 + }~r) /"  

1/¢-2 1 / v ~  l / v / 2  ] 

(36) 

(37) 



H.G. Kwatny, H. Kim / Variable structure regulation 75 

Notice that the induction motor has three control variables, the three stator phase voltages. Our 
objective is to design a feedback controller to regulate speed and two other quantities. In steady operation 
we desire balanced operation which may be defined to mean either i 0 = 0 or v 0 = 0. It is convenient to 
introduce a new state variable X according to the relation 

2 = Vo (38) 

and to regulate X. Of course X = 0 implies that o 0 vanishes almost everywhere. An appropriate choice for 
the third regulated variable is the rotor electromagnetic field magnitude, ~p, which is to maintain a 
specified constant value, tp0. Such an approach is advocated by Sabanovic and Izosimov [17] and Izosimov 
and Utkin [12]. They recommend that a sliding surface be specified so that on that surface 

d 
d---~ (~p-  ~k0)+ b (~p-  ~p0)= 0, b > 0 ,  (39a) 

where 

~b----[~2 + ~b2]1/2, ~1 = L f d i d + L f i f l ,  t ~ 2 = L f d i q + L f i f 2 .  (39b)  

Thus, the design described in the above references is based on switching surfaces 

Sl :---- 71 ( _Lfdtftq.. - ' r }  + c (~o -  % )  =o3 + c (~o -  Wo), c > O ,  (40a) 

$2 := X, (40b) 

S a : = - r f [ q J  2+~bE]-l/2(q~li n + + 2 i f  z } _ b ( + _ + o ) = ~  + b ( ~ - ~ o ) ,  b > 0 .  (40c) 

We will modify this strategy somewhat to illustrate the flexibility of the approach advocated in this 
paper. Let us specify the regulated outputs 

Yl = h l ( ° ) ,  ld, lq, 10, /f l ,  If2, X) : '~ - to- -o90 ,  

Y2 = h2(°~,  id, iq, io, if l ,  if2, X ) : =  X, 

y3 = h3(~0, id, iq, i0, if,, if2, X):=~P--~P0. 

(41a) 

(41b) 

(41c) 

Straightforward calculation leads to the conclusion that the characteristic numbers associated with the 
three outputs defined in (41) are, respectively, r 1 = 2, r 2 = 1, r 3 = 2. It follows that z is of dimension 5 and 
the zero dynamics are of dimension 2. In fact, we obtain by direct computation using the construction of 
Section 3, 

Z 2 

Z 3 

Z 4 

Z 5 

-'1 tO -- 020 | 

l 
- LfdieEi d + Lediniq -- "r 

X 

- 'I'o 

--rf~blifl  -- rf ~2if2 

(42) 

- 1 

z 1 -0 1 0 0 0 zl I 
I 

z 2 0 0 0 0 0 z 2 [ 

z 3 = 0 0 0 0 0 z3 I+ 

Z 4 0 0 0 0 1 Z 4 

_z 5 0 0 0 0 0 _z 5 j 

d 
dt  

0 

O/1 + OllVd -I- PlZVq 

UO 

0 

0/3 + P31Vd + P32Uq 

(43) 

Note that we can identify z I =Ya, z2 =./'1, z3--Y2, z4---Y3 and z 5 =)~3. The corresponding differential 
equations of the linearizable dynamics, in the standard form of Section 3, Eq. (11), are 
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w h e r e  

/::]=I ~ d  [--if2 ill iq -- id] 

2rf[Lfdifl Lfdif2 Lfdi d d- 2Lfifl Lfdi q +2Lfi f2]  

o Lfd oil 
• 0 L s 0 Lfd 

Lfd 0 Lf 0 
0 Lfd 0 Lf 

¢OLfdif2 -- ri d -- OaLsi q ] 
-oOLfdifl + toLsi d - riq 

- - r f l f l  

- r f l f 2  

ol, o12]= [ 
P31 P32 ] __ 

Lfd 
j [ - i f2  ifl iq --id] 

2rr [ Lfdifl Lfdif2 Lfdi d + 2Lfifl  Lrdi q + 2Lfif2 ] 

[ L~ 0 Lfd 0 ] - 1 

0 L~ 0 Lfd 
Led 0 Lf 0 
0 Lfd 0 Lf 

0 
0 
0 

N o w ,  let us cha r ac t e r i z e  the  ze ro  d y n a m i c s .  T h e  ze ro  d y n a m i c s  evo lve  on  the  m a n i f o l d  d e f i n e d  by  

z (x )  = 0 so tha t  z 1 = 0 imp l i e s  co = % and  z 3 = X  = 0 imp l i e s  v o = 0 a l m o s t  eve rywhere .  H e n c e  we can  
r e d u c e  (34) to 

d r 
d--t i° = - ~oo io, (44a)  0] I:dllr 0 .ll 1 [il L~ 0 Lm d iq -- oaoL ~ r woLfd iq 

/Lfd 0 Lf 0 d-t fl 0 0 rf ill 

Lfd 0 Lf L tf2 J 0 0 0 rf ] L if2 ] 

(44b)  

N o t e  tha t  s ince % is a cons t an t ,  Eq.  (48b) is l inear•  Th is  fact  can  be  explo i ted•  W e  will  f irst  cha r ac t e r i z e  

so lu t ions  wh ich  sa t is fy  the  r e m a i n i n g  cons t r a in t s  z 2 = 0, z 4 = 0, a n d  z 5 = 0. 

N o t e  tha t  by  us ing  the  de f in i t i ons  o f  qq, ~b 2 to e l i m i n a t e  the cu r ren t s  i d, iq the  c o n s t r a i n t s  z 2 = 0 a n d  

z 5 = 0 m a y  be  wr i t t en  

--t~lif2 + ~bZifl = $, 

~lifl + ~2if2 = O. 

F r o m  these  e q u a t i o n s  we  o b t a i n  the  r e l a t ion  

;,,1 1[0 ,45, 
where  we h a v e  also i n v o k e d  the o u t p u t  c o n s t r a i n t  z 4 = 0, i.e., 

~b~ + qfl2 - ~ b2 = 0. (46)  
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zero dyr 
maN! 

RxS 

Fig. 2. The flow on the zero dynamics manifold. The attractor is a periodic orbit with frequency 8~0. If the load torque is zero, than 
&0 is zero and the attractor consists of a circle of equilibrium points. 

From the defining relations for ~kl, ~k2 and (45) we obtain the stator currents 

Combining the last two equations of (44b) with (45) we obtain the flux differential equation 

dr 11 r [0 
0 

(47) 

(48) 

,,11 01) 
o =  ~ ( L~d /L fL , , )  + I ' e =  ( L ~ d / L f L , )  + 1  " 

The matrix multiplier in (50) is a function of the relative frequency ~0 and may be interpreted as a 
frequency transfer matrix. Thus, we see that the effective driving voltage along trajectories in the zero 
dynamics manifold is periodic with amplitude and phase (relative to the rotor flux) obtained from (50). 

0 

where 

Ls [ ° 1 
R = o - ~ f  d _ 

where initial conditions must satisfy (46). The general solution of (48) is 

rf~" (49) ~kl = ~ko s i n ( 8 ~ / +  7) ,  ~k2 = ~k0 cos(8~t  + y) and 8~ .'= if---0-" 

Thus, we find that the flux is periodic with amplitude ~o as required and that it has frequency ~ .  It 
follows from (45) and (47) that the stator and rotor currents are also periodic with this frequency. Note 
that ~ is the relative frequency of rotation as seen in the rotor fixed frame of reference. It  is proportional  
to the load torque. Also observe that from (45) and (47) we can conclude that the rotor (field) current 
phasor leads the stator ( d - q  axis) current phasor by an angle of t a n ( z L f / ~ o ) .  Finally, (45), (47) and (48) 
can be inserted into the first two relations of (44b) to obtain the effective driving voltage 
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Finally, the design can be completed by selecting switching surfaces and establishing the reaching 
controls via the quadratic Liapunov function method as described in Section 3. It is worth noting that 
exponential speed decay to its desired value is accomplished by selecting the switching surfaces in the z 
coordinates as contrasted with incorporating this requirement into the definition of the regulated output as 
proposed in [12,17]. Similar remarks hold for the rotor field flux. 

5. Concluding remarks 

Many systems of interest to us are inherently nonlinear and require the design of nonlinear switching 
surfaces. Because of this, we have found it convenient to view the VS design process in the recently 
developed framework of partial linearization and zero dynamics for affine nonlinear systems. From this 
perspective the essential step in the design process is that of selecting the regulated outputs so that the zero 
dynamics have the required stability properties. Once this is done, the linearizable dynamics (11) can be 
computed. Equations (11) represent a convenient regular form for the design of a switching controller. A 
switching surface linear in the z variables results in an essentially standard VS control problem with linear 
plant because the equivalent control behaves as a linearizing control. Such a switching surface is easily 
obtained which will stabilize the sliding dynamics and we have given one simple construction in (27). 
Finally, the control functions u,(x) are chosen to stabilize the switching manifold. This element of the 
design process also benefits from the convenient structure of (11). 

Note that the crucial step in the design is precisely the selection of a set of outputs y such that the zero 
dynamics are satisfactory. In many cases this means that the zero dynamics have a bounded, stable 
attractor. Of course, this corresponds to the selection of switching surfaces in the conventional VS 
formulation which result in a stable sliding mode. In the case of linear dynamics, switching surface design 
can be nicely addressed via techniques of linear system stabilization and a comprehensive theory is 
available (Young et al. [20], Kwatny and Young [15]). With nonlinear dynamics the available methods are 
ad hoc and rely principally on the ingenuity of the designer. Perhaps the best suggestion is that of 
Izosimov and Utkin [12] in which the desired dynamics are specified in terms of linear differential 
equations and the nonlinear switching surfaces derived therefrom. Typically, these differential equations 
are formulated in terms of the regulated variables. Notwithstanding some successful applications, such an 
approach suffers from several subtle difficulties. For instance the number of switching surfaces which may 
be consistently characterized by differential equations is not arbitrary and has not previously been 
identified. 

The formulation outlined herein may be seen as enhancing this approach in several respects. First, the 
m switching surfaces defined in Proposition 2 can be interpreted as a set of algebraic and differential 
equations in the regulated outputs because z may be viewed as composed of the variable y and some of its 
time derivatives. These surfaces result in r - m independent linear sliding differential equations - exactly 
the right number. Second, the essential nonlinear core of the sliding dynamics is isolated as the n - r  
dimensional zero dynamics, which may be substantially smaller than the dimension of the sliding dynamics 
( n -  m) as pointed out in [4]. Indeed, we have seen that the zero dynamics manifold belongs to the 
intersection of the output constraint manifold and the sliding manifold. Finally, the approach given here is 
systematic. 

It is well known that the sliding mode behavior is precisely the zero dynamics with respect to the sliding 
surfaces s(x) provided that the condition (4) holds, cf. Young et al [20] for the case of linear dynamics and 
Marino [16] for the case of linearizable dynamics. Byrnes and Isidori [4] suggest how to construct switching 
surfaces provided the system is minimum phase at an equilibrium point with respect to the regulated 
outputs y = h(x) with the result that the system zero dynamics is a subset of the sliding dynamics. In fact, 
this is precisely the correct theoretical framework for systematizing the method of Izosimov and Utkin [12]. 

Although the identification of the linearizable dynamics (11) is straightforward, the direct identification 
of the zero dynamics in local explicit form is not. On the other hand, the zero dynamics may be analyzed 
by investigating the constrained dynamics (14). This is one reason that we prefer to deal with the zero 
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dynamics in the implicit (constrained) form of (14). We emphasize, however, that in some important 
applications, such as the induction motor described in Section 4, a local characterization of the zero 
dynamics is not appropriate, underscoring the importance of (14). 
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